Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
نویسندگان
چکیده
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.
منابع مشابه
Towards large-scale, fully ab initio calculations of ionic liquids.
Ionic liquids have attracted a substantial amount of interest as replacement of traditional electrolytes in high efficiency electrochemical devices for generation and storage of energy due to their superior physical and chemical properties, especially low volatility and high electrochemical stability. For enhanced performance of the electrochemical devices ionic liquids are required to be highl...
متن کاملAtomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li+ on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N -methyl-N -butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (...
متن کامل3D Molecular Theory of Solvation for Nanochemistry in Solution
Statistical-mechanical, molecular theory of solvation (a.k.a. 3D-RISM-KH) predicts from the first principles the solvation structure and thermodynamics of nanosystems and properly accounts for chemical functionalities by representing both electrostatic and non-polar features of solvation structure such as hydrogen bonding and solvophobicity, salt bridges, structural solvent, associative and ele...
متن کاملIonic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containin...
متن کاملHighly infrared reflective nickel doped ZrO2 from first principles simulation
First principles( or ab initio) density-functional-theory (DFT) with projected augmented wave (PAW) method simulations were performed to calculate the electronic structures and optical properties of 25% nickel (Ni) doped cubic ZrO2 crystals. We implemented two ab initio DFT application methods to the ZrO2 ceramic elastic constant, structure stability, and optical property calculation. The Cerpl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 46 شماره
صفحات -
تاریخ انتشار 2015